Mo  $K\alpha$  radiation

48411 measured reflections

6114 independent reflections 4069 reflections with  $I > 2\sigma(I)$ 

 $\mu = 1.00 \text{ mm}^-$ 

T = 150 K $0.2 \times 0.2 \times 0.2$  mm

 $R_{\rm int} = 0.126$ 

Z = 2

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## Bis(dicyclohexylammonium) µ-oxalato- $\kappa^4 O^1, O^2: O^{1'}, O^{2'}$ -bis[aqua(oxalato- $\kappa^2 O^1, O^2$ )diphenylstannate(IV)]

### Ndongo Gueve,<sup>a</sup> Libasse Diop,<sup>a</sup>\* K. C. Kieran Molloy<sup>b</sup> and Gabrielle Kociok-Köhn<sup>b</sup>

<sup>a</sup>Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and <sup>b</sup>Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England

Correspondence e-mail: dlibasse@gmail.com

Received 2 September 2010; accepted 11 November 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.040; wR factor = 0.082; data-to-parameter ratio = 17.9.

The structure of the title compound,  $(C_{12}H_{24}N)_2[Sn_2(C_6H_5)_4 (C_2O_4)_3(H_2O)_2$ , consists of a bischelating oxalate ion, located on an inversion center, which is linked to two SnPh<sub>2</sub> groups. The coordination sphere of the Sn(IV) ion is completed by a monochelating oxalate anion and a water molecule. The Sn(IV) atoms are thus seven-coordinated. The discrete binuclear units are further connected by hydrogen bonds, leading to a supramolecular crystal structure. The asymmetric unit contains one half dianion and one  $(Cy_2NH_2)^+$  cation.

#### **Related literature**

For background to organotin(IV) chemistry, see: Ballmann et al. (2009); Diallo et al. (2007); Diassé-Sarr et al. (1997); Ng et al. (1992); Singh et al. (2008); de Sousa et al. (2007); Wang et al. (2009); Xanthopoulou et al. (2007, 2008); Zia-ur-Rahman et al. (2007). For related Sn(IV) structures, see: Diop et al. (2002, 2003).



#### **Experimental**

Crystal data  $(C_{12}H_{24}N)_2[Sn_2(C_6H_5)_4(C_2O_4)_3 (H_2O)_2]$ 

 $M_r = 1210.52$ Monoclinic,  $P2_1/n$ 

| a = 13.1725 (4) Å               |
|---------------------------------|
| b = 14.6121 (4) Å               |
| c = 14.1139 (4) Å               |
| $\beta = 100.869 \ (2)^{\circ}$ |
| $V = 2667.88(13) \text{ Å}^3$   |

#### Data collection

| Nonius KappaCCD diffractometer         |
|----------------------------------------|
| Absorption correction: multi-scan      |
| (SORTAV; Blessing, 1995)               |
| $T_{\min} = 0.825, \ T_{\max} = 0.825$ |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ H atoms treated by a mixture of  $wR(F^2) = 0.082$ independent and constrained S = 1.01refinement  $\Delta \rho_{\rm max} = 0.54$  e Å<sup>-3</sup> 6114 reflections 341 parameters  $\Delta \rho_{\rm min} = -0.72 \text{ e} \text{ Å}^{-3}$ 2 restraints

| Table 1                |     |     |
|------------------------|-----|-----|
| Hydrogen-bond geometry | (Å, | °). |

| $D - H \cdots A$       | D-H                       | $H \cdots A$                         | $D \cdots A$                 | $D - \mathbf{H} \cdots A$              |
|------------------------|---------------------------|--------------------------------------|------------------------------|----------------------------------------|
| $O7-H7B\cdots O4^{i}$  | 0.90 (4)                  | 1.77 (4)                             | 2.663 (3)                    | 175 (4)                                |
| $N-H1A\cdots O3^{ii}$  | 0.84 (4)                  | 2.12 (3)                             | 2.910 (4)                    | 155 (3)                                |
| $N-H1A\cdots O4^{ii}$  | 0.84(4)                   | 2.37 (4)                             | 2.986 (4)                    | 130 (3)                                |
| $N-H1B\cdots O6^{iii}$ | 0.91 (4)                  | 2.08 (4)                             | 2.960 (4)                    | 164 (4)                                |
| Symmetry codes:        | (i) $-x + \frac{1}{2}, y$ | $y + \frac{1}{2}, -z + \frac{1}{2};$ | (ii) $x - \frac{1}{2}, -y +$ | $-\frac{1}{2}, z - \frac{1}{2};$ (iii) |

-x, -v + 1, -z

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2310).

#### References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Ballmann, J., Fuchs, M. G. G., Dechert, S., John, M. & Meyer, F. (2009). Inorg. Chem. 48, 90-99
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Diallo, W., Diop, C. A. K., Diop, L., Mahon, M. F., Molloy, K. C., Russo, U., Biesemans, M. & Willem, R. (2007). J. Organomet. Chem. 692, 2187-2192.
- Diassé-Sarr, A., Diop, L., Mahon, M. F. & Molloy, K. C. (1997). Main Group Met. Chem. 20, 223-229.
- Diop, C. A. K., Diop, L. & Toscano, A. R. (2002). Main Group Met. Chem. 25, 327-328.
- Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881-882.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ng, S. W., Das, V. G. K., Gielen, M. & Tiekink, E. R. T. (1992). Appl. Organomet. Chem. 6, 19-25.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Singh, N., Kumar, A., Molloy, K. C. & Kociok-Köhn, G. (2008). Acta Cryst. E64, m115.
- Sousa, G. F. de, Deflon, V. M., Manso, L. C. C., Ellena, J. E., Mascarenhas, Y. P., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). *Transition Met. Chem.* 32, 649–655.
- Wang, Z., Zhao, G. & Tian, L. (2009). Acta Cryst. E65, m528.
- Xanthopoulou, M. N., Hadjikakou, S. K., Hadjiliadis, N., Kubicki, M., Skoulika, S., Bakas, T., baril, M. & Butler, I. S. (2007). *Inorg. Chem.* 46, 1187–1195.
- Xanthopoulou, M. N., Kourkoumelis, N., Hadjikakou, S. K., Hadjiliadis, N., Kubicki, M., Karkabounas, S. & Bakas, T. (2008). *Polyhedron*, 27, 3318– 3324.
- Zia-ur-Rahman, Ali, S., Muhammed, N. & Meetsma, A. (2007). Acta Cryst. E63, m89–m90.

Acta Cryst. (2010). E66, m1645-m1646 [doi:10.1107/S1600536810046738]

## Bis(dicyclohexylammonium) $\kappa^2 O^1, O^2$ )diphenylstannate(IV)]

 $\mu$ -oxalato- $\kappa^4 O^1, O^2: O^{1'}, O^{2'}$ -bis[aqua(oxalato-

### N. Gueye, L. Diop, K. C. K. Molloy and G. Kociok-Köhn

#### Comment

In the dynamic of our research work on organotin(IV) chemistry (Diallo *et al.*, 2007; Diassé-Sarr *et al.*, 1997) because of several applications found (Xanthopoulou *et al.*, 2007, 2008; Zia-ur-Rahman *et al.*, 2007; Singh *et al.*, 2008; Wang *et al.*, 2009; Ballmann *et al.*, 2009; de Sousa *et al.*, 2007) and our interest in the coordinating behaviour of oxyanions in this family of compounds, we had yet reported the crystal structures of  $C_2O_4(SnPh_3)_2$  (Diop *et al.*, 2003) and  $SO_4(SnPh_3)_2$ .H<sub>2</sub>O (Diop *et al.*, 2002) and have initiated here the study of the interactions between  $(Cy_2NH_2)_2C_2O_4.2H_2O$  and  $C_2O_4(SnPh_3)_2$  which has yielded the studied compound.

The asymmetric unit consists of one half of the molecule, located about an inversion centre at the mid-point of the C3—C3<sup>i</sup> bond (symmetry code i: -*x*, 1 - *y*, -*z*). In its units structure two SnPh<sub>2</sub> residues are linked by a central bichelating oxalate ion  $[O_5O_6:O_5O_6]$  and every SnPh<sub>2</sub> residue is then linked to another monochelating anion [O1, O2]. A water molecule completes the tin centre coordination to seven, which can be described as a distorted *trans*-C<sub>2</sub>SnO<sub>5</sub> pentagonal bipyramidal geometry [C—Sn—C angle: 168.75 (13)°]. Within the bridging carboxylate all the C—O bonds are equal within experimental error, implying complete delocalization of double-bond character within this residue. The bond lengths C1—O1 and C2—O2, [1.273 (4) Å], and C2—O3, C1—O4 [1.225 (4) and 1.247 (4) Å] indicate respectively a single and double bond character; the bond length C1—O4 results from involvement of O4 in two distinct hydrogen bonds. Among the Sn—O bonds, Sn1—O6 is notably longer, O6 being the only oxygen of this kind involved in hydrogen bonding.

Every moiety is then connected to its neighbour by three types of hydrogen bonds: one O—H…O type involving an H atom of the water molecule and one O atom of monochelating oxalate [O7—H7B…O4], one N—H…O contact involving one O atom of the bichelating oxalate anion and the cation [N—H1B…O6] and a third bifurcated one also involving the cation [N—H1A…O3 and N—H1A…O4], giving a supramolecular crystal structure.

A similar structure, bearing butyl groups in place of phenyl, was previously reported (Ng et al., 1992).

#### **Experimental**

Crystals of the title compound were obtained by allowing  $(Cy_2NH_2)_2C_2O_4.2H_2O$  (90 mmol in 15 ml e thanol) to react with  $C_2O_4(SnPh_3)_2$  (45 mmol in 15 ml e thanol). The mixture was stirred during several hours and slow solvent evaporation afforded crystals suitable for X-rays studies.

### Refinement

All C-bonded H atoms were placed in idealized positions (C—H in the range 0.95 to 1.00 Å), while H atoms bonded to N and O atoms were considered as free atoms. Isotropic displacement parameters for H atoms were calculated from  $U_{eq}$  of their parent atoms.

### **Figures**



Fig. 1. A part of the crystal structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed bonds represent hydrogen bonds.

Bis(dicyclohexylammonium)  $\mu$ -oxalato- $\kappa^4 O^1, O^2: O^{1'}, O^{2'}$ - bis[aqua(oxalato- $\kappa^2 O^1, O^2$ )diphenylstannate(IV)]

### Crystal data

| $(C_{12}H_{24}N)_2[Sn_2(C_6H_5)_4]$ | $(C_2O_4)_3(H_2O)_2]$ | F(000) = 1244                                  |
|-------------------------------------|-----------------------|------------------------------------------------|
| $M_r = 1210.52$                     |                       | $D_{\rm x} = 1.507 {\rm ~Mg~m}^{-3}$           |
| Monoclinic, $P2_1/n$                |                       | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn                 |                       | Cell parameters from 29450 reflections         |
| <i>a</i> = 13.1725 (4) Å            |                       | $\theta = 2.9-27.5^{\circ}$                    |
| <i>b</i> = 14.6121 (4) Å            |                       | $\mu = 1.00 \text{ mm}^{-1}$                   |
| c = 14.1139 (4) Å                   |                       | T = 150  K                                     |
| $\beta = 100.869 \ (2)^{\circ}$     |                       | Irregular, colourless                          |
| $V = 2667.88 (13) \text{ Å}^3$      |                       | $0.2 \times 0.2 \times 0.2$ mm                 |
| Z = 2                               |                       |                                                |

#### Data collection

| Nonius KappaCCD<br>diffractometer                            | 6114 independent reflections                                              |
|--------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                     | 4069 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                     | $R_{\rm int} = 0.126$                                                     |
| 293 2.0 degree images with $\phi$ and $\omega$ scans         | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 4.1^{\circ}$ |
| Absorption correction: multi-scan<br>(SORTAV;Blessing, 1995) | $h = -17 \rightarrow 17$                                                  |
| $T_{\min} = 0.825, T_{\max} = 0.825$                         | $k = -18 \rightarrow 18$                                                  |
| 48411 measured reflections                                   | $l = -18 \rightarrow 18$                                                  |

#### Refinement

Refinement on  $F^2$ 

Primary atom site location: structure-invariant direct methods

| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
|---------------------------------|-------------------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.040$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.082$               | H atoms treated by a mixture of independent and constrained refinement              |
| <i>S</i> = 1.01                 | $w = 1/[\sigma^2(F_o^2) + (0.0335P)^2 + 0.6086P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 6114 reflections                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| 341 parameters                  | $\Delta \rho_{max} = 0.54 \text{ e} \text{ Å}^{-3}$                                 |
| 2 restraints                    | $\Delta \rho_{\rm min} = -0.72 \ e \ {\rm \AA}^{-3}$                                |
| 0 constraints                   |                                                                                     |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x             | У             | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|---------------|---------------|---------------|---------------------------|
| Sn  | 0.208644 (18) | 0.515508 (15) | 0.133115 (17) | 0.02034 (8)               |
| 01  | 0.27245 (18)  | 0.37817 (14)  | 0.16466 (16)  | 0.0235 (5)                |
| O2  | 0.35282 (17)  | 0.53257 (14)  | 0.24319 (16)  | 0.0242 (5)                |
| O3  | 0.47106 (18)  | 0.45574 (15)  | 0.34724 (17)  | 0.0285 (6)                |
| O4  | 0.38762 (18)  | 0.29623 (15)  | 0.26721 (17)  | 0.0275 (6)                |
| 05  | 0.09563 (17)  | 0.41884 (14)  | 0.04184 (16)  | 0.0230 (5)                |
| O6  | 0.06436 (17)  | 0.60103 (14)  | 0.04207 (15)  | 0.0210 (5)                |
| 07  | 0.2413 (2)    | 0.67274 (16)  | 0.18266 (19)  | 0.0292 (6)                |
| H7A | 0.292 (2)     | 0.669 (3)     | 0.233 (2)     | 0.052 (14)*               |
| H7B | 0.197 (3)     | 0.712 (3)     | 0.202 (3)     | 0.074 (16)*               |
| Ν   | -0.0015 (2)   | 0.2042 (2)    | -0.0277 (2)   | 0.0214 (6)                |
| H1A | -0.019 (3)    | 0.170 (2)     | -0.076 (3)    | 0.027 (10)*               |
| H1B | -0.027 (3)    | 0.261 (3)     | -0.044 (3)    | 0.038 (11)*               |
| C1  | 0.3500 (3)    | 0.3702 (2)    | 0.2332 (2)    | 0.0216 (8)                |
| C2  | 0.3979 (3)    | 0.4602 (2)    | 0.2795 (2)    | 0.0211 (7)                |
| C3  | 0.0088 (3)    | 0.4480 (2)    | -0.0001 (2)   | 0.0196 (7)                |
| C4  | 0.1110 (3)    | 0.5052 (2)    | 0.2372 (2)    | 0.0225 (7)                |
| C5  | 0.0459 (3)    | 0.5767 (2)    | 0.2523 (3)    | 0.0277 (8)                |
| Н5  | 0.0467        | 0.6321        | 0.2172        | 0.033*                    |
| C6  | -0.0202 (3)   | 0.5686 (3)    | 0.3177 (3)    | 0.0331 (9)                |
| H6  | -0.0632       | 0.6185        | 0.3277        | 0.040*                    |
| C7  | -0.0237 (3)   | 0.4886 (3)    | 0.3681 (3)    | 0.0356 (9)                |
| H7  | -0.0690       | 0.4828        | 0.4127        | 0.043*                    |
| C8  | 0.0399 (3)    | 0.4162 (3)    | 0.3531 (3)    | 0.0359 (9)                |
| H8  | 0.0380        | 0.3607        | 0.3880        | 0.043*                    |
| C9  | 0.1059 (3)    | 0.4239 (2)    | 0.2882 (3)    | 0.0295 (8)                |
| Н9  | 0.1482        | 0.3735        | 0.2781        | 0.035*                    |
| C10 | 0.2855 (3)    | 0.5464 (2)    | 0.0178 (3)    | 0.0276 (8)                |
| C11 | 0.3816 (3)    | 0.5881 (3)    | 0.0352 (3)    | 0.0453 (11)               |
| H11 | 0.4136        | 0.6027        | 0.0995        | 0.054*                    |
| C12 | 0.4320 (4)    | 0.6091 (4)    | -0.0408 (4)   | 0.0664 (15)               |
| H12 | 0.4979        | 0.6378        | -0.0276       | 0.080*                    |
| C13 | 0.3872 (4)    | 0.5888 (3)    | -0.1337 (3)   | 0.0533 (13)               |

| H13  | 0.4220      | 0.6032     | -0.1850     | 0.064*      |
|------|-------------|------------|-------------|-------------|
| C14  | 0.2922 (4)  | 0.5477 (3) | -0.1528 (3) | 0.0485 (11) |
| H14  | 0.2609      | 0.5336     | -0.2174     | 0.058*      |
| C15  | 0.2416 (3)  | 0.5266 (3) | -0.0778 (3) | 0.0377 (9)  |
| H15  | 0.1756      | 0.4981     | -0.0919     | 0.045*      |
| C16  | 0.1143 (2)  | 0.2108 (2) | -0.0052 (2) | 0.0218 (7)  |
| H16  | 0.1344      | 0.2502     | 0.0533      | 0.026*      |
| C17  | 0.1521 (3)  | 0.2565 (2) | -0.0890 (2) | 0.0256 (8)  |
| H17A | 0.1338      | 0.2183     | -0.1476     | 0.031*      |
| H17B | 0.1180      | 0.3168     | -0.1024     | 0.031*      |
| C18  | 0.2684 (3)  | 0.2693 (2) | -0.0643 (3) | 0.0308 (9)  |
| H18A | 0.2863      | 0.3099     | -0.0075     | 0.037*      |
| H18B | 0.2927      | 0.2986     | -0.1192     | 0.037*      |
| C19  | 0.3215 (3)  | 0.1774 (3) | -0.0425 (3) | 0.0355 (9)  |
| H19A | 0.3969      | 0.1869     | -0.0231     | 0.043*      |
| H19B | 0.3092      | 0.1392     | -0.1015     | 0.043*      |
| C20  | 0.2811 (3)  | 0.1276 (3) | 0.0380 (3)  | 0.0327 (9)  |
| H20A | 0.3134      | 0.0663     | 0.0471      | 0.039*      |
| H20B | 0.3018      | 0.1621     | 0.0990      | 0.039*      |
| C21  | 0.1647 (3)  | 0.1171 (2) | 0.0165 (3)  | 0.0270 (8)  |
| H21A | 0.1413      | 0.0894     | 0.0727      | 0.032*      |
| H21B | 0.1439      | 0.0761     | -0.0396     | 0.032*      |
| C22  | -0.0561 (3) | 0.1646 (2) | 0.0476 (2)  | 0.0234 (8)  |
| H22  | -0.0323     | 0.1001     | 0.0613      | 0.028*      |
| C23  | -0.1710 (3) | 0.1642 (3) | 0.0064 (3)  | 0.0332 (9)  |
| H23A | -0.1847     | 0.1254     | -0.0521     | 0.040*      |
| H23B | -0.1942     | 0.2272     | -0.0123     | 0.040*      |
| C24  | -0.2322 (3) | 0.1273 (3) | 0.0812 (3)  | 0.0368 (10) |
| H24A | -0.3071     | 0.1303     | 0.0542      | 0.044*      |
| H24B | -0.2137     | 0.0623     | 0.0953      | 0.044*      |
| C25  | -0.2087 (3) | 0.1823 (3) | 0.1736 (3)  | 0.0371 (9)  |
| H25A | -0.2462     | 0.1557     | 0.2216      | 0.045*      |
| H25B | -0.2330     | 0.2461     | 0.1607      | 0.045*      |
| C26  | -0.0935 (3) | 0.1823 (3) | 0.2141 (3)  | 0.0402 (10) |
| H26A | -0.0706     | 0.1190     | 0.2321      | 0.048*      |
| H26B | -0.0795     | 0.2203     | 0.2732      | 0.048*      |
| C27  | -0.0316 (3) | 0.2196 (3) | 0.1407 (2)  | 0.0324 (9)  |
| H27A | -0.0494     | 0.2848     | 0.1271      | 0.039*      |
| H27B | 0.0433      | 0.2158     | 0.1678      | 0.039*      |
|      |             |            |             |             |

## Atomic displacement parameters $(Å^2)$

|    | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|--------------|--------------|--------------|--------------|--------------|--------------|
| Sn | 0.01965 (13) | 0.01890 (12) | 0.02124 (13) | 0.00066 (11) | 0.00070 (8)  | 0.00046 (11) |
| 01 | 0.0233 (14)  | 0.0203 (12)  | 0.0240 (13)  | 0.0026 (10)  | -0.0033 (11) | -0.0020 (10) |
| O2 | 0.0238 (13)  | 0.0161 (13)  | 0.0292 (13)  | 0.0016 (9)   | -0.0043 (10) | 0.0021 (10)  |
| O3 | 0.0284 (14)  | 0.0251 (13)  | 0.0266 (14)  | -0.0012 (10) | -0.0089 (11) | 0.0018 (10)  |
| O4 | 0.0286 (14)  | 0.0193 (13)  | 0.0314 (14)  | 0.0034 (10)  | -0.0025 (11) | 0.0037 (10)  |

| 05  | 0.0225 (13) | 0.0177 (12) | 0.0262 (13) | 0.0014 (10)  | -0.0020 (11) | -0.0027 (10) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| O6  | 0.0217 (13) | 0.0192 (12) | 0.0201 (12) | 0.0006 (10)  | -0.0009 (10) | -0.0002 (10) |
| 07  | 0.0260 (16) | 0.0237 (14) | 0.0353 (16) | 0.0013 (11)  | -0.0007 (13) | -0.0018 (12) |
| Ν   | 0.0246 (17) | 0.0186 (17) | 0.0208 (17) | -0.0001 (12) | 0.0042 (14)  | -0.0004 (14) |
| C1  | 0.021 (2)   | 0.0227 (19) | 0.0225 (19) | 0.0008 (14)  | 0.0082 (16)  | -0.0007 (15) |
| C2  | 0.0206 (19) | 0.0233 (19) | 0.0203 (18) | -0.0011 (14) | 0.0060 (15)  | -0.0010 (14) |
| C3  | 0.023 (2)   | 0.0193 (17) | 0.0166 (16) | 0.0008 (14)  | 0.0031 (14)  | -0.0021 (13) |
| C4  | 0.0218 (17) | 0.027 (2)   | 0.0175 (17) | -0.0008 (14) | -0.0009 (13) | -0.0022 (14) |
| C5  | 0.024 (2)   | 0.029 (2)   | 0.028 (2)   | 0.0001 (15)  | -0.0010 (16) | 0.0000 (15)  |
| C6  | 0.021 (2)   | 0.045 (2)   | 0.033 (2)   | -0.0008 (17) | 0.0036 (17)  | -0.0033 (18) |
| C7  | 0.029 (2)   | 0.048 (2)   | 0.032 (2)   | -0.0127 (18) | 0.0105 (17)  | -0.0046 (19) |
| C8  | 0.036 (2)   | 0.038 (2)   | 0.034 (2)   | -0.0119 (18) | 0.0066 (19)  | 0.0024 (18)  |
| C9  | 0.031 (2)   | 0.027 (2)   | 0.031 (2)   | -0.0032 (16) | 0.0058 (17)  | -0.0017 (16) |
| C10 | 0.029 (2)   | 0.0265 (19) | 0.029 (2)   | 0.0055 (15)  | 0.0077 (16)  | 0.0054 (15)  |
| C11 | 0.030 (2)   | 0.070 (3)   | 0.036 (2)   | -0.007 (2)   | 0.0053 (19)  | 0.008 (2)    |
| C12 | 0.033 (3)   | 0.105 (4)   | 0.065 (4)   | -0.011 (3)   | 0.017 (3)    | 0.019 (3)    |
| C13 | 0.050 (3)   | 0.072 (3)   | 0.045 (3)   | 0.015 (2)    | 0.028 (2)    | 0.016 (2)    |
| C14 | 0.069 (3)   | 0.048 (3)   | 0.031 (2)   | 0.004 (2)    | 0.015 (2)    | 0.0013 (19)  |
| C15 | 0.048 (3)   | 0.035 (2)   | 0.033 (2)   | -0.0038 (18) | 0.0124 (19)  | -0.0001 (18) |
| C16 | 0.0198 (19) | 0.0236 (18) | 0.0212 (18) | 0.0027 (14)  | 0.0020 (15)  | 0.0001 (14)  |
| C17 | 0.029 (2)   | 0.0263 (19) | 0.0211 (19) | 0.0022 (15)  | 0.0042 (16)  | 0.0009 (15)  |
| C18 | 0.026 (2)   | 0.040 (2)   | 0.028 (2)   | 0.0013 (16)  | 0.0100 (17)  | 0.0019 (17)  |
| C19 | 0.024 (2)   | 0.045 (2)   | 0.036 (2)   | 0.0081 (17)  | 0.0031 (17)  | -0.0076 (18) |
| C20 | 0.027 (2)   | 0.035 (2)   | 0.034 (2)   | 0.0090 (16)  | -0.0025 (17) | -0.0011 (17) |
| C21 | 0.028 (2)   | 0.0224 (19) | 0.029 (2)   | 0.0033 (15)  | 0.0002 (16)  | -0.0016 (15) |
| C22 | 0.027 (2)   | 0.0194 (18) | 0.0237 (19) | 0.0025 (14)  | 0.0054 (16)  | 0.0037 (14)  |
| C23 | 0.030 (2)   | 0.042 (2)   | 0.028 (2)   | -0.0047 (17) | 0.0056 (17)  | -0.0043 (17) |
| C24 | 0.026 (2)   | 0.049 (2)   | 0.037 (2)   | -0.0064 (18) | 0.0085 (18)  | -0.0029 (19) |
| C25 | 0.032 (2)   | 0.047 (2)   | 0.035 (2)   | -0.0018 (18) | 0.0132 (18)  | -0.0056 (19) |
| C26 | 0.038 (3)   | 0.058 (3)   | 0.026 (2)   | -0.010 (2)   | 0.0104 (18)  | -0.0021 (19) |
| C27 | 0.030(2)    | 0.043 (2)   | 0.023 (2)   | -0.0064 (17) | 0.0038 (17)  | -0.0043 (17) |

## Geometric parameters (Å, °)

| Sn—C10             | 2.121 (3)  | C13—C14  | 1.368 (6) |
|--------------------|------------|----------|-----------|
| Sn—C4              | 2.132 (3)  | С13—Н13  | 0.9500    |
| Sn—O1              | 2.189 (2)  | C14—C15  | 1.388 (5) |
| Sn—O2              | 2.229 (2)  | C14—H14  | 0.9500    |
| Sn—O5              | 2.269 (2)  | С15—Н15  | 0.9500    |
| Sn—O7              | 2.416 (2)  | C16—C17  | 1.522 (4) |
| Sn—O6              | 2.430 (2)  | C16—C21  | 1.527 (4) |
| O1—C1              | 1.273 (4)  | С16—Н16  | 1.0000    |
| O2—C2              | 1.273 (4)  | C17—C18  | 1.517 (5) |
| O3—C2              | 1.225 (4)  | С17—Н17А | 0.9900    |
| O4—C1              | 1.247 (4)  | С17—Н17В | 0.9900    |
| O5—C3              | 1.259 (4)  | C18—C19  | 1.518 (5) |
| O6—C3 <sup>i</sup> | 1.256 (4)  | C18—H18A | 0.9900    |
| O7—H7A             | 0.886 (19) | C18—H18B | 0.9900    |
| O7—H7B             | 0.896 (19) | C19—C20  | 1.527 (5) |

| N—C16              | 1.500 (4)   | C19—H19A      | 0.9900    |
|--------------------|-------------|---------------|-----------|
| N—C22              | 1.507 (4)   | С19—Н19В      | 0.9900    |
| N—H1A              | 0.85 (4)    | C20—C21       | 1.514 (5) |
| N—H1B              | 0.91 (4)    | C20—H20A      | 0.9900    |
| C1—C2              | 1.548 (5)   | C20—H20B      | 0.9900    |
| C3—O6 <sup>i</sup> | 1.256 (4)   | C21—H21A      | 0.9900    |
| C3—C3 <sup>i</sup> | 1.537 (7)   | C21—H21B      | 0.9900    |
| C4—C5              | 1.394 (5)   | C22—C23       | 1.516 (5) |
| C4—C9              | 1.397 (5)   | C22—C27       | 1.522 (5) |
| C5—C6              | 1.389 (5)   | C22—H22       | 1.0000    |
| С5—Н5              | 0.9500      | C23—C24       | 1.540 (5) |
| C6—C7              | 1.373 (5)   | C23—H23A      | 0.9900    |
| С6—Н6              | 0.9500      | С23—Н23В      | 0.9900    |
| С7—С8              | 1.390 (5)   | C24—C25       | 1.514 (5) |
| С7—Н7              | 0.9500      | C24—H24A      | 0.9900    |
| C8—C9              | 1.382 (5)   | C24—H24B      | 0.9900    |
| С8—Н8              | 0.9500      | C25—C26       | 1.518 (5) |
| С9—Н9              | 0.9500      | С25—Н25А      | 0.9900    |
| C10—C11            | 1.385 (5)   | С25—Н25В      | 0.9900    |
| C10—C15            | 1.394 (5)   | C26—C27       | 1.534 (5) |
| C11—C12            | 1.398 (6)   | C26—H26A      | 0.9900    |
| C11—H11            | 0.9500      | C26—H26B      | 0.9900    |
| C12—C13            | 1.366 (7)   | С27—Н27А      | 0.9900    |
| С12—Н12            | 0.9500      | C27—H27B      | 0.9900    |
| C10—Sn—C4          | 168.75 (13) | C14—C15—C10   | 121.4 (4) |
| C10—Sn—O1          | 97.50 (11)  | C14—C15—H15   | 119.3     |
| C4—Sn—O1           | 93.06 (10)  | C10-C15-H15   | 119.3     |
| C10—Sn—O2          | 92.53 (12)  | N—C16—C17     | 109.4 (3) |
| C4—Sn—O2           | 94.18 (11)  | N—C16—C21     | 111.8 (3) |
| O1—Sn—O2           | 73.55 (8)   | C17—C16—C21   | 110.9 (3) |
| C10—Sn—O5          | 93.06 (12)  | N—C16—H16     | 108.2     |
| C4—Sn—O5           | 86.04 (10)  | С17—С16—Н16   | 108.2     |
| O1—Sn—O5           | 74.35 (8)   | С21—С16—Н16   | 108.2     |
| O2—Sn—O5           | 147.87 (8)  | C18—C17—C16   | 109.9 (3) |
| C10—Sn—O7          | 86.30 (11)  | C18—C17—H17A  | 109.7     |
| C4—Sn—O7           | 88.01 (10)  | С16—С17—Н17А  | 109.7     |
| O1—Sn—O7           | 140.57 (9)  | C18—C17—H17B  | 109.7     |
| O2—Sn—O7           | 67.06 (8)   | С16—С17—Н17В  | 109.7     |
| O5—Sn—O7           | 144.90 (8)  | H17A—C17—H17B | 108.2     |
| C10—Sn—O6          | 85.62 (11)  | C17—C18—C19   | 110.2 (3) |
| C4—Sn—O6           | 83.54 (10)  | C17—C18—H18A  | 109.6     |
| O1—Sn—O6           | 144.21 (8)  | C19—C18—H18A  | 109.6     |
| O2—Sn—O6           | 142.15 (7)  | C17—C18—H18B  | 109.6     |
| O5—Sn—O6           | 69.87 (8)   | C19—C18—H18B  | 109.6     |
| O7—Sn—O6           | 75.09 (8)   | H18A—C18—H18B | 108.1     |
| C1—O1—Sn           | 117.4 (2)   | C18—C19—C20   | 111.1 (3) |
| C2—O2—Sn           | 117.3 (2)   | C18—C19—H19A  | 109.4     |
| C3—O5—Sn           | 119.8 (2)   | С20—С19—Н19А  | 109.4     |
|                    |             |               |           |

| C3 <sup>i</sup> —O6—Sn              | 114.2 (2) | C18—C19—H19B  | 109.4     |
|-------------------------------------|-----------|---------------|-----------|
| Sn—O7—H7A                           | 104 (3)   | C20—C19—H19B  | 109.4     |
| Sn—O7—H7B                           | 127 (3)   | H19A—C19—H19B | 108.0     |
| H7A—O7—H7B                          | 103 (4)   | C21—C20—C19   | 112.4 (3) |
| C16—N—C22                           | 118.5 (3) | C21—C20—H20A  | 109.1     |
| C16—N—H1A                           | 108 (2)   | C19—C20—H20A  | 109.1     |
| C22—N—H1A                           | 105 (2)   | C21—C20—H20B  | 109.1     |
| C16—N—H1B                           | 108 (2)   | C19—C20—H20B  | 109.1     |
| C22—N—H1B                           | 109 (2)   | H20A—C20—H20B | 107.9     |
| H1A—N—H1B                           | 108 (3)   | C20-C21-C16   | 109.6 (3) |
| O4—C1—O1                            | 125.1 (3) | C20-C21-H21A  | 109.8     |
| O4—C1—C2                            | 118.2 (3) | C16—C21—H21A  | 109.8     |
| O1—C1—C2                            | 116.6 (3) | C20-C21-H21B  | 109.8     |
| O3—C2—O2                            | 126.6 (3) | C16—C21—H21B  | 109.8     |
| O3—C2—C1                            | 118.9 (3) | H21A—C21—H21B | 108.2     |
| O2—C2—C1                            | 114.4 (3) | N—C22—C23     | 107.8 (3) |
| O6 <sup>i</sup> —C3—O5              | 125.2 (3) | N—C22—C27     | 110.8 (3) |
| O6 <sup>i</sup> —C3—C3 <sup>i</sup> | 117.5 (4) | C23—C22—C27   | 111.5 (3) |
| O5—C3—C3 <sup>i</sup>               | 117.2 (4) | N—C22—H22     | 108.9     |
| C5—C4—C9                            | 117.9 (3) | C23—C22—H22   | 108.9     |
| C5—C4—Sn                            | 121.4 (2) | С27—С22—Н22   | 108.9     |
| C9—C4—Sn                            | 120.6 (2) | C22—C23—C24   | 110.6 (3) |
| C6—C5—C4                            | 121.3 (3) | С22—С23—Н23А  | 109.5     |
| С6—С5—Н5                            | 119.4     | C24—C23—H23A  | 109.5     |
| С4—С5—Н5                            | 119.4     | С22—С23—Н23В  | 109.5     |
| C7—C6—C5                            | 120.2 (3) | С24—С23—Н23В  | 109.5     |
| С7—С6—Н6                            | 119.9     | H23A—C23—H23B | 108.1     |
| С5—С6—Н6                            | 119.9     | C25—C24—C23   | 110.9 (3) |
| C6—C7—C8                            | 119.4 (3) | C25—C24—H24A  | 109.5     |
| С6—С7—Н7                            | 120.3     | C23—C24—H24A  | 109.5     |
| С8—С7—Н7                            | 120.3     | C25—C24—H24B  | 109.5     |
| C9—C8—C7                            | 120.7 (3) | C23—C24—H24B  | 109.5     |
| С9—С8—Н8                            | 119.7     | H24A—C24—H24B | 108.1     |
| С7—С8—Н8                            | 119.7     | C24—C25—C26   | 110.5 (3) |
| C8—C9—C4                            | 120.6 (3) | С24—С25—Н25А  | 109.5     |
| С8—С9—Н9                            | 119.7     | С26—С25—Н25А  | 109.5     |
| С4—С9—Н9                            | 119.7     | С24—С25—Н25В  | 109.5     |
| C11—C10—C15                         | 117.5 (3) | С26—С25—Н25В  | 109.5     |
| C11—C10—Sn                          | 120.6 (3) | H25A—C25—H25B | 108.1     |
| C15—C10—Sn                          | 121.9 (3) | C25—C26—C27   | 111.5 (3) |
| C10-C11-C12                         | 120.7 (4) | С25—С26—Н26А  | 109.3     |
| C10-C11-H11                         | 119.6     | C27—C26—H26A  | 109.3     |
| C12—C11—H11                         | 119.6     | С25—С26—Н26В  | 109.3     |
| C13—C12—C11                         | 120.5 (4) | С27—С26—Н26В  | 109.3     |
| C13—C12—H12                         | 119.7     | H26A—C26—H26B | 108.0     |
| C11—C12—H12                         | 119.7     | C22—C27—C26   | 110.0 (3) |
| C12—C13—C14                         | 119.8 (4) | С22—С27—Н27А  | 109.7     |
| C12—C13—H13                         | 120.1     | С26—С27—Н27А  | 109.7     |

| C14—C13—H13                                                       | 120.1                   |                | С22—С27—Н27В                     |              | 109.7      |
|-------------------------------------------------------------------|-------------------------|----------------|----------------------------------|--------------|------------|
| C13—C14—C15                                                       | 120.0 (4)               |                | С26—С27—Н27В                     |              | 109.7      |
| C13—C14—H14                                                       | 120.0                   |                | H27A—C27—H27B                    |              | 108.2      |
| C15—C14—H14                                                       | 120.0                   |                |                                  |              |            |
| Symmetry codes: (i) $-x$ , $-y+1$ , $-z$ .                        |                         |                |                                  |              |            |
|                                                                   |                         |                |                                  |              |            |
| Hydrogen-bond geometry (Å, °)                                     |                         |                |                                  |              |            |
| D—H···A                                                           |                         | <i>D</i> —Н    | H···A                            | $D \cdots A$ | D—H··· $A$ |
| O7—H7B····O4 <sup>ii</sup>                                        |                         | 0.90 (4)       | 1.77 (4)                         | 2.663 (3)    | 175 (4)    |
| N—H1A···O3 <sup>iii</sup>                                         |                         | 0.84 (4)       | 2.12 (3)                         | 2.910 (4)    | 155 (3)    |
| N—H1A····O4 <sup>iii</sup>                                        |                         | 0.84 (4)       | 2.37 (4)                         | 2.986 (4)    | 130 (3)    |
| N—H1B····O6 <sup>i</sup>                                          |                         | 0.91 (4)       | 2.08 (4)                         | 2.960 (4)    | 164 (4)    |
| Symmetry codes: (ii) - <i>x</i> +1/2, <i>y</i> +1/2, - <i>z</i> - | +1/2; (iii) <i>x</i> -1 | /2, -y+1/2, z- | -1/2; (i) $-x$ , $-y+1$ , $-z$ . |              |            |



